Cellular and molecular mechanisms of photodynamic hypericin therapy for nasopharyngeal carcinoma cells.
نویسندگان
چکیده
Hypericin-mediated photodynamic therapy (HY-PDT) has become a potential treatment for tumors and nonmalignant disorders. Some studies reported that HY-PDT could lead to apoptosis in some carcinoma cells. However, the molecular mechanism of HY-PDT remains unknown. In this study, we evaluated the molecular mechanisms of hypericin associated with light-emitting diode irradiation on the poorly differentiated human nasopharyngeal carcinoma cell line CNE-2 in vitro. To comprehensively understand the effects of HY-PDT on CNE-2 cells, we detected cell viability, cell cycle, apoptosis, intracellular glutathione content, and intracellular caspase (caspase-9, caspase-3, and caspase-8) activity. Furthermore, we performed genome-wide expression analysis via microarrays at different time points in response to HY-PDT, and we found that differentially expressed genes were highly enriched in the pathways related to reactive oxygen species generation, mitochondrial activity, DNA replication and repair, cell cycle/proliferation, and apoptosis. These results were consistent with our cytology test results and demonstrated that caspase-dependent apoptosis occurred after HY-PDT. Taken together, both cellular and molecular data revealed that HY-PDT could inhibit the growth of CNE-2 cells and induce their apoptosis.
منابع مشابه
Effect of hypericin-mediated photodynamic therapy on the expression of vascular endothelial growth factor in human nasopharyngeal carcinoma.
Photodynamic therapy (PDT) is currently being used as an alternative treatment modality for various types of cancers. PDT involves the selective uptake and retention of a photosensitizer in the tumor followed by light irradiation of an appropriate wavelength to cause the destruction of tumor cells by the formation of cytotoxic reactive oxygen species. The photosensitizer, hypericin, has shown g...
متن کاملHypericin-photodynamic therapy inhibits proliferation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A
Objective(s): To elucidate the effects and potential mechanisms of hypericin-photodynamic therapy (HYP-PDT) for treating the human rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS) MH7A cell-line. Materials and Methods: MH7A cells were subjected to HYP-PDT intervention and apoptosis was evaluated via MTT, nuclear staining, and flowcytometry analyses. Intracellular reactive oxygen spec...
متن کاملKamuhabwa 12_8
In the present study, we evaluated the possibility of enhancing the photodynamic effect of hypericin in transitional cell carcinoma (TCC) spheroids by the use of the oxygen carrier, perfluorodecalin. Following incubation with hypericin, RT-112 TCC spheroids were irradiated in the presence or absence of perfluorodecalin, at light doses of 7 J/cm2 or 28 J/ cm2, delivered at a fluence rate of 15 m...
متن کاملPhotodynamic Therapy with Hypericin Improved by Targeting HSP90 Associated Proteins
In this study we have focused on the response of SKBR-3 cells to both single 17-DMAG treatment as well as its combination with photodynamic therapy with hypericin. Low concentrations of 17-DMAG without any effect on survival of SKBR-3 cells significantly reduced metabolic activity, viability and cell number when combined with photodynamic therapy with hypericin. Moreover, IC10 concentation of 1...
متن کاملPhotodynamic therapy and tumor imaging of hypericin-treated squamous cell carcinoma
BACKGROUND Conventional cancer therapy including surgery, radiation, and chemotherapy often are physically debilitating and largely ineffective in previously treated patients with recurrent head and neck squamous cell carcinoma (SCC). A natural photochemical, hypericin, could be a less invasive method for laser photodynamic therapy (PDT) of these recurrent head and neck malignancies. Hypericin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 334 3 شماره
صفحات -
تاریخ انتشار 2010